

NRA Progress Report

Reliable Diagnostics and Prognostics for Critical Avionic Systems

07-IVHM1-07-0042

Center for Advanced Life Cycle Engineering (CALCE)
Prognostics and Health Management Group
University of Maryland,
College Park, MD 20742

CALCE PHM Team

- Director: Dr. Michael Pecht (Chair Professor)
- Professors and Research Staff:
 - Dr. Michael Azarian
 - Dr. Donald Barker
 - Dr. Diganta Das
 - Dr. Peter Sandborn
 - Eli Dolev (visiting scholar from Israel)
 - Andy Hess
 - Sony Mathew

- Students:
 - Shunfeng Chen (PhD)
 - Jun Dai (PhD)
 - Qingguo Fan (PhD)
 - Jie Gu (PhD)
 - Sachin Kumar (PhD)
 - Daeil Kwon (PhD)
 - Hyunseok Oh (PhD)
 - Nishad Patil (PhD)
 - Robert Riddle (PhD)
 - Vasilis Sotiris (PhD)
 - Navid Charooseh (MS)
 - Rubyca Jaai (MS)
 - Taoufik Jazouli (MS)
 - Abraham Tomy Micheal (MS)
 - Adam Montjoy (MS)
 - Andrew Roshwalb (BS/MS)
 - Desanka Ichitrajkova (exchange student from Macedonia)

Project Objectives

- Increase aircraft safety and reduce aircraft maintenance costs by improving the accuracy of fault determination in critical avionics systems.
- Develop approaches to detect faults, to model degradations, and to predict failures in avionics components.
- Develop a methodology involving parameter selection, feature extraction, pattern recognition, anomaly detection, parameter isolation, and remaining useful life estimation.
- Equip NASA with the ability to monitor the health of onboard electronics of an aircraft in actual operating conditions to increase the safety and availability of the aircraft.

Deliverables

Deliverables	Completion Date
Initial system description and documentation	09/30/2008
Nominal / faulty data sets for initial system	09/30/2008
Prognostic algorithm software implementation and documentation	09/30/2009
Demonstration of prognostic algorithms running online with initial data sets	09/30/2009
Evaluation of performance of prognostic algorithms running with initial data sets	09/30/2009
Acceptability determination of supplied aircraft avionics data	01/01/2010
Demonstration of one of the following: Prognostic algorithms running online with supplied aircraft avionics data and evaluation of their performance	09/30/2010
Diagnostic algorithms running online with initial system data	
At least one published conference paper or journal article describing the work performed	09/30/2010
Final report	09/30/2010

Test Vehicle

- Avionics systems have components and architecture that are similar to computer systems:
 - Microprocessors
 - FPGAs
 - Memory systems
 - Power systems
 - Operating systems
 - Firmware
- Computers are complex electronics systems that can be used as a test vehicle for developing robust prognostics methodologies.
- The prognostic methodologies tested and validated for computers can be implemented for critical avionics systems.
- CALCE is working with computer companies and can leverage these companies' data and product knowledge for prognostics research.

Data for Developing Prognostic Methods

- A product's health is the general state of the product with respect to the expected normal operating condition.
- A healthy baseline can be formed by collecting data at the beginning of a system's operational life or using data collected before encountering any fault.
- 10 new computers were tested under 72 different combinations of environmental, power, and usage conditions.
- Specific system parameters for each computer were monitored including fan speed, main component temperature, resource management parameters, etc.
- A baseline data set was generated from the above 10 computers to train the algorithms used in this research.
- Sample test data was taken from field returned computers

Sample Representation of "Healthy" Data

Mahalanobis Distance, a feature of healthy training data.

Various detection and inference techniques can be used (i.e., Hypothesis testing, Bayesian classification, etc.) if the data can be represented by a parametric distribution.

Algorithms

Algorithms for Anomaly Detection

- Bayesian Support Vector Machine (BSVM) based approach
 - In the absence of negative class data (fault or failure information), a one-class-classification approach is used to determine healthy and unhealthy class data from training data.
 - ❖ Projection Pursuit Analysis (PPA) based approach
 - Data are projected onto principle component and residual spaces, and statistics, including T² and SPE, are computed for training data.
- Symbolic Time Series Analysis (STSA) based approach
 - Training data is used to model a healthy system by partitioning its derived performance measure in space and time.
 - ❖ Mahalanobis Distance (MD) based approach
 - A baseline for the normal operation of these computers is created, including the distribution of performance parameters, the MD of training data, and Δ MD distribution of performance parameters.

Anomaly Detection Approach Using BSVM

- Decompose into lower dimensional models.
- Compute density of training data to estimate negative class.
- Construct an optimal classifier function D.
- Compute the posterior class probabilities (PP).
- Compute the joint posterior class probabilities (JCP).

KDE: Kernel Density Estimation, SVC: Support Vector Classifier

Anomaly Detection Approach using BSVM

• Project onto lower dimensional models.

- Compute the posterior class probabilities (PP).
- Compute the joint posterior class probabilities (JCP).

PCA_T: projection of test data based on covariance of training data

Evaluation of Test Computer Using a BSVM

- The training small % amount of baseline data.
- Sample test data 5000 sample points.
- Two 2-dimensional subspace decompositions were used:
 - Model subspace, explained variance: ~0.62
 - Residual Subspace, explained variance: ~0.12
- BSVM results identifies system abnormal behavior that coincides with the operation of the computer fan.

BSVM Classifiers

Model Space

Residual Space

PC – principal component

BSVM Application on Field - Returned Test Computer

Anomaly Detection Approach Using STSA

STSA Application on Field-Returned Test Computer

Number of training states 110 Vs. Number of test states 118	8
Change in critical transition probability, training Vs. test	π_{0} π_{T} = 0.0443
Change in mean time to stay in critical state	$T_0 - T_T = 60$ units

Software Development

- Software is being developed for diagnostics and prognostics by implementing Symbolic Time Series Analysis (STSA) and Bayesian Support Vector Machine (BSVM) analysis
- The software stores output in an SQL database.
- Classes are written in C#.

Summary

- A computer system has been identified as a demonstration vehicle for PHM algorithm development.
- Training data to represent healthy system have been collected.
- Approaches for anomaly detection that are being developed include BSVM and STSA.
- Actual data from computers are used to demonstrate detection capability of the BSVM and STSA approaches.
- Software is being developed for all the approaches discussed.

Next Steps

- Continue to run experiments to generate and record soft faults and intermittent failures. (In-progress)
- Detect the intermittent events using following algorithms:
 - Symbolic Time Series Analysis (STSA)
 - Bayesian Support Vector Machines (BSVM)
- Incorporate all approaches into a software.